Liquidity Constraints and the Value of Insurance*

Keith Marzilli Ericson
Boston University’s Questrom School of Business and NBER

Justin Sydnor
University of Wisconsin-Madison School of Business and NBER

August, 24 2018

Abstract

Insurance affects the variability of consumption over time, which is not captured in standard expected-utility-of-wealth models. We develop a consumption-utility model that shows how liquidity constraints and borrowing costs impact a rational agent’s willingness to pay for insurance. Liquidity constraints generate high insurance demand when premiums are due smoothly, sometimes leading to seemingly dominated choices. Conversely, a risk-averse person may value insurance below its expected value and appear risk loving when premiums are due in a single payment. Moreover, optimal insurance contracts take different forms with liquidity constraints. We show empirical insurance analysis using the standard model can generate misleading counterfactuals and welfare estimates. Finally, we demonstrate the model’s feasibility and importance with an application to evaluating cost-sharing reductions on the health insurance exchanges.

Keywords: Insurance, liquidity constraints, cost-sharing design, risk aversion

* We thank Jason Abaluck, Nikhil Agarwal, Jacob Bor, Marika Cabral, Randy Ellis, Amy Finkelstein, Neale Mahoney, Michaela Pagel, Jim Rebitzer, and Jeremy Tobacman for helpful comments, as well as workshop participants at Boston University, the BU-Harvard-MIT Health Seminar, the National Bureau of Economics Summer Institute, the University of Pennsylvania’s Behavioral Economics and Health Symposium, the University of Texas, and the University of Wisconsin, Madison.
How do we understand the value of insurance? Both foundational theory on insurance demand (e.g., Arrow 1963; Rothschild and Stiglitz, 1976) and most recent empirical work analyzing individual insurance decisions (e.g., see Einav, Finkelstein and Levin, 2010) rely on a static expected-utility model where different levels of insurance equate to different lotteries over terminal wealth.\(^1\) While this framework is a valuable simplification, it abstracts from how insurance affects the flow of consumption utility over time (Gollier, 2003). How insurance affects consumption flows is particularly important for those with low levels of liquid financial assets who face either limits to or high costs for borrowing. There is ample evidence that many households find themselves facing these types of “liquidity constraints”.\(^2\) For example, roughly half of American households report they would have difficulty paying for an emergency $400 expense (Federal Reserve, 2015) and nearly half report having liquid assets lower than their health-insurance deductible (Claxton et al., 2015).

We examine how liquidity constraints affect a rational agent’s willingness to pay for insurance in a dynamic consumption-utility framework in the absence of moral-hazard concerns. We begin by exploring the role of liquidity constraints in a simple setting where the individual faces the possibility of a single loss occurring at some point during the year and has two available insurance contracts with moderately different levels of coverage in the form of different deductibles. This basic situation has been used extensively to motivate recent empirical studies of insurance demand (e.g., Cohen and Einav, 2007; Einav, Finkelstein and Cullen, 2010; Sydnor, 2010; Barshegyan, 2013; Bhargava et al., 2017). After establishing the modeling framework for this situation, we use calibrated examples to illustrate a number of important insights for insurance value under liquidity constraints.

In the consumption-utility framework, a rational agent’s willingness to pay for insurance is strongly affected by the individual’s interest rate and borrowing limits. Importantly, the effect of liquidity constraints can depend crucially on the relative consumption shock induced by premium payments versus uninsured losses. In many insurance markets, insurance premiums can

\(^1\) Whether utility is defined over total lifetime wealth, liquid financial wealth, or simply over total spending on a particular insurable loss category is an unresolved issue in the literature. Many empirical applications in insurance economics utilize the Constant Absolute Risk Aversion (CARA) utility function, which makes it possible to abstract away from this question within the traditional expected-utility model. We discuss this in more detail in Section 2.

\(^2\) Throughout we use the term “liquidity constraints” to refer broadly to situations where individuals with little assets face borrowing limits and/or high costs of borrowing. In our modeling section and results we distinguish between cases with true limits to borrowing versus situations with no borrowing limits but potentially high interest chargers.
be spread out across smaller periodic payments at little or no additional cost. For example, in health insurance many workers have premiums deducted from paychecks throughout the year and many auto and home insurance plans have periodic-payment options. We show that when premiums are paid smoothly, the value of additional insurance is higher for those facing liquidity constraints. The intuition is that for a liquidity constrained individual, insurance has both a classic risk-protection benefit and also an additional financing benefit. Paying higher insurance premiums via smooth payments can be a more efficient way of financing losses for a person with liquidity constraints. In contrast, when insurance premiums must be paid in a lump sum up front, the premium can generate a large consumption shock as well. In those cases, a liquidity constrained individual may be willing to pay less than the expected value for additional insurance coverage (see also Casaburi and Willis, forthcoming). Liquidity constraints can generate both strong risk aversion and also risk-loving behavior in insurance markets.

These results have important implications for research on the efficiency of choice in insurance markets (Sydnor, 2010; Abaluck and Gruber, 2011; Handel, 2013; Bhargava et al., 2017). This literature has documented widespread “mistakes” from the perspective of the standard model of insurance demand, including a) high willingness to pay for modest reductions in risk (Sydnor, 2010); b) placing different value on premium versus out-of-pocket costs and caring about contract features like deductibles above-and-beyond their impact on out-of-pocket risk (Abaluck and Gruber, 2011); and c) even violations of dominance (Handel, 2013; Bhargava et al., 2017). There is evidence that people are confused about insurance and that confusion contributes to this behavior (e.g., Johnson et al., 2013; Loewenstein et al., 2013; Handel and Kolstad, 2015; Bhargava et al., 2017). However, our results also show the behaviors that appear to be clear mistakes may not be mistakes once liquidity constraints are considered. For example, we show that a rational liquidity-constrained person can be willing to pay so much for additional coverage that they would choose plans that appear dominated from the perspective of the traditional static expected-utility framework. Further, the assumption that only the distributions of total covered versus uncovered spending matter for insurance demand, which underlies the normative analysis in the Abaluck and Gruber (2011) approach, does not hold under liquidity constraints.

In our calibrated examples, variation in liquidity constraints has a larger impact on the value for insurance than does plausible variation in the coefficient of relative risk aversion when individuals are liquid. This has important implications for research using structural models that
estimate risk preferences in the standard insurance model from observed contract choices (e.g., Cohen and Einav, 2007; Handel 2013; Handel, Hendel and Whinston, 2015). If demand comes from the consumption-utility model but researchers use the traditional framework, inferences about risk aversion will be strongly affected by variation in liquidity constraints. While estimates of risk aversion in the traditional framework may at times be a useful approximation of the effective risk attitudes generated by consumption-utility maximization, we demonstrate that the out-of-sample predictions using traditional risk-aversion estimates can be substantially biased.

We also show that liquidity constraints and the consumption-utility model can change the nature of the optimal insurance contract. A classic result from Arrow (1963) holds that, in the absence of moral hazard, the optimal contract for a “risk-averting buyer will take the form of 100 per cent coverage above a deductible minimum.” The intuition is that any other contract design with the same actuarial value will create a mean-preserving spread of uninsured losses compared to the straight-deductible contract (Gollier and Schlesinger, 1996). However, we show that in the consumption-utility model a person with liquidity constraints will sometimes prefer a yearly contract with a lower deductible, coinsurance above the deductible, and a higher maximum-out-of-pocket limit to a deductible-only contract with the same actuarial value. The reason for this departure from the classic result is that with liquidity constraints, utility is affected not only by the total uninsured loss amount but also by the flow of how those losses arrive. In particular, when multiple losses can occur, straight-deductible plans expose the liquidity-constrained individual to larger consumption shocks early in the year (i.e., under the deductible). Lowering the deductible and adding co-insurance raises the size of total possible uninsured losses, but can help the liquidity-constrained individual smooth consumption shocks over the year. Complex non-linear contracts that combine deductibles and coinsurance, like we see in health insurance plans, have primarily been rationalized in prior literature as a compromise between risk protection and incentives to combat moral hazard (e.g., Zeckhauser, 1970). Our analysis shows, however, that even in the absence of moral-hazard concerns, liquidity constraints offer another reason that people may prefer to avoid contracts with large deductibles in favor of other cost-sharing arrangements.

We demonstrate the importance and feasibility of considering liquidity constraints for policy questions with an application of the consumption-utility framework to health insurance. We evaluate the dollar value of the Affordable Care Act’s Cost Sharing Reductions (CSRs) for low-
income individuals purchasing insurance in the health insurance exchanges (a.k.a. marketplaces).3 Individuals eligible for CSRs get subsidized plans with lower cost-sharing requirements (e.g. lower deductibles and/or maximum out-of-pocket limits). We use claims data from the Truven Marketscan database for insured working-age adults to simulate patterns of health-spending for a representative adult over the course of the year. Given those spending patterns, we then estimate the reduction in premiums (if premiums were paid smoothly) the individual would need in the non-CSR plan to be indifferent between that and the receiving the additional coverage of the CSR plan. We find that this value is strongly affected by the level of liquidity constraints. For example, consider a person with log consumption utility and income around 125% of the federal poverty limit, who would be eligible for a subsidized “silver tier” plan with 94% actuarial value instead of the standard 70%. The expected value of that additional coverage would be just over $1,000. If the person could borrow costlessly, their value for the additional coverage would only slightly exceed the expected value. However, if that person could only borrow at high costs like those of payday loans (e.g., 500% APR) they would benefit by around $200 more than the expected value from receiving the 94% AV plan and if they were unable to borrow at all, the benefit would be about $400. These results highlight that properly evaluating a policy like the CSR reductions, and determining whether the welfare gains to the individuals receiving these benefits exceed the social costs of obtaining those funds, requires an understanding of the degree of liquidity constraints in the affected population.

Finally, we present new survey evidence that supports the value of understanding liquidity constraints when assessing the value of insurance. In a sample of respondents with key demographics targeted to match national distributions, we find a strong correlation between a stated desire for lower deductibles at extreme costs (e.g., “dominated plans”) and measures of liquidity constraints even after controlling for income and education.

Our study builds on a long tradition in economics of models of lifecycle consumption-utility maximization under various forms of liquidity constraints. We contribute more directly to prior work exploring the links between risk, liquidity constraints and insurance. Jaffè and Malani (2017) have a closely related and complementary working paper that develops a model where individuals can finance health shocks either through ex-ante purchases of a full insurance contract or ex-post with loans. In their model, the availability of loans lowers the value of having insurance.

3 See DeLeire et al. (2017) for an overview and analysis of cost-sharing reductions in private marketplace plans.
Similarly, Handel, Hendel and Whinston (2015) simulate that the welfare losses from reduced insurance coverage or reclassification risk are lower when people can borrow and save. In other closely related work Casaburi and Willis (forthcoming) highlight the point that liquidity-constrained individuals will have low demand for insurance when premiums are required up-front and empirically find that take-up of crop-insurance in a developing country is dramatically higher if premiums are paid at harvest time when farmers have ample liquidity.4 Our results are consistent with and help to reconcile the seemingly conflicting insights from these papers, as we see that liquidity can often lower the value of insurance (as in Handel, Hendel and Whinston, 2015; Jaffe and Malani, 2017) but may actually increase it when premium payments create their own large liquidity shocks (as in Casaburi and Willis, forthcoming). Our study also provides novel results relative to these papers related to the possibility of dominance violations and the nature of optimal insurance contracts. Our work also shares some similarities to Chetty and Szeidl’s (2007) model of risk preferences under consumption commitments, which highlights how adjustment costs can raise the effective level of risk aversion because individuals cannot costlessly reallocate their consumption profiles in the face of shocks. Relative to Chetty and Szeidl (2007), our study is focused more on the role of borrowing costs and is more closely tied to the standard insurance modeling framework. Our study also relates to Gollier (1994; 2003), who highlighted that precautionary savings should substitute for market insurance over the lifecycle and that there should be low demand for costly market insurance except when people are up against liquidity constraints. Finally, our exercise evaluating the benefits of ACA cost-sharing reductions has some parallels to research on assessing the value of unemployment insurance, which has addressed the importance of accounting for how insurance affects consumption flows (Hansen and Imrohoroglu, 1992; Gruber, 1997; Chetty, 2008).

In our concluding section we discuss future areas for research extending the use of this consumption-utility approach for studying insurance markets. For example, while we focus here on insurance value in the absence of moral hazard, we give a few ideas about how the consumption-utility approach may interact with moral hazard concerns. We also discuss some of the potential behavioral foundations of liquidity constraints and give some initial thoughts on where better understanding those micro-foundations may have value for the study of insurance markets.

4 See also Liu and Myers, 2014 for a related dynamic model of microinsurance demand.
Section 2. Modeling the Ex-ante Value of Insurance

In this section, we compare the demand for insurance under the classic expected-utility-of-wealth framework and the consumption-utility framework that accounts for liquidity constraints. We focus on the simplest case where there is only one possible loss $L > 0$ that will occur during a given time period with some fixed probability π. We assume the individual has background wealth w_0, which for simplicity we assume is certain except for the possible loss.

The individual can purchase an insurance contract to cover part of this loss. Insurance contracts are denoted Z_j, and specify a total premium payment P_j for the policy and a deductible D_j. We assume that the size of the potential loss is greater than the deductible in any policy under consideration. In the event the loss occurs, an individual who purchased insurance pays the deductible and is fully insured for the remaining loss above the deductible. Later in the paper we consider insurance with more complicated cost-sharing designs, but use this simple and standard case as our starting point.

2.1 Static Expected Utility of Wealth Framework

The well-known formulation for expected utility with insurance contract Z_j in the static expected-utility-of-wealth framework is then given by

$$EU(Z_j, L, \pi, w_0) = \pi v(w_0 - P_j - D_j) + (1 - \pi)v(w_0 - P_j),$$

where v is the utility function over final wealth states with the standard assumptions for risk aversion that $v' > 0, v'' < 0$. In this framework, what level of initial wealth is relevant for this calculation is unclear, and many different assumptions are made in practice (e.g. annual or lifetime wealth).

5 We use v for the utility function in this subsection to distinguish from the more standard u that we use for the utility function over consumption in the next subsection.
2.2 Dynamic Consumption Utility Framework

In the consumption-utility framework, the individual’s utility is defined over consumption. We assume standard separable discounted utility with a lifetime of T periods so that total discounted utility for a given anticipated consumption stream is given by:

$$U = \sum_{t=0}^{T} \delta^t u(c_t).$$

where $0 < \delta \leq 1$ is the constant exponential discount factor, c_t denotes the level of consumption in period t. The instantaneous consumption-utility function u is continuous and concave, with $u' > 0, u'' < 0$.

In the consumption-utility framework, we must specify more information about the timing of the potential loss and premium payments, which can often be left unspecified in the classic expected-utility-of-wealth framework. We continue to consider a single loss L that will occur with probability π during the course of an insurance policy duration (e.g. one year). That insurance policy spans N periods (e.g. periods are months, $N = 12$). Note that we typically expect the number of periods in a lifetime T to be much greater than N. In our baseline model, we let there be a constant per-period probability of the loss conditional on the loss having not yet occurred: $\omega_t = 1 - (1 - \pi)^t$. Similarly, there is a need to denote the timing of how the total premium payment P_j for insurance policy Z_j are made. In our baseline model we consider a case where the premiums are due in equal installments p_j across the timeframe of the insurance contract so that $P_j = \sum_{t=0}^{N} p_j$. Later we consider the case of up-front payments.

In the consumption utility framework, a single wealth measure is replaced instead with a flow of income, assets and interest rates on borrowing and saving. We assume the individual earns constant income y each period and denote financial assets at time t as a_t. The individual earns gross interest on positive financial assets of R_s each period or can borrow in the form of negative assets that incur a gross borrowing interest rate of R_b. The limit on debt is defined as a minimum level of (potentially negative) assets allowed a_{min}. We let $l_t \in \{0,1\}$ be an indicator function for whether the loss occurs in period t.

Then, assets evolve by the following equation:

$$a_{t+1} = R_s(a_t + y - p_j - c_t) - D_j l_{t+1} \text{ if } a_t + y - p_j - c_t \geq 0,$$
\[a_{t+1} = R_b(a_t + y - p_j - c_t) - D_j l_{t+1} \text{ if } a_t + y - p_j - c_t < 0, \]

subject to the debt-limit constraint that \(a_t \geq a_{\text{min}} \forall t \).

The individual chooses consumption each period to maximize the expected discounted utility flow, subject to the law of motion for assets and the debt limit. We assume that consumption is chosen after observing the realization of whether or not the loss occurs in that period. We denote this dynamic programming problem as:

\[
V_t \left(a_t \middle| \max_{\tau \in 0,...,t} \{l_\tau\} \right) = \max_{c_t} \ u(c_t) + \delta EV_{t+1} \left(a_{t+1} \middle| \max_{\tau \in 0,...,t+1} \{l_\tau\} \right)
\]

Where \(\max \{L_t\} \) indicates whether the loss has occurred by period \(t \), and the expectation for period \(t+1 \) is over whether the loss occurs in period \(t+1 \), since that affects assets in \(t+1 \).

This basic framework is flexible and allows us to explore different types of liquidity constraints. For example, we can consider a case where the individual can save but is not allowed to borrow by setting \(a_{\text{min}} = 0 \). Setting both \(a_{\text{min}} = 0 \) and \(R_s = 0 \) captures a more extreme case where the individual consumes based on cash on hand, with no ability to borrow or accumulate assets.\(^6\)

2.3 Measuring the value of insurance

We denote the value of insurance using a certainty equivalent approach. Specifically, consider an individual who has access to insurance coverage \(Z_k \) with total premium \(P_k \) and deductible \(D_k \). We are interested in the value of this coverage relative to an alternative policy with less coverage, \(Z_j \).

The lower-coverage policy has a higher deductible such that \(D_j > D_k \). We denote the value of the marginal insurance provided by \(Z_k \) relative to \(Z_j \) as \(X_{k,j} \). We define \(X_{k,j} \) as the reduction in premium the lower-coverage plan would need to have to make the individual just indifferent between the two policies. Formally, we solve for \(X_{k,j} \) in both the expected utility of wealth

\(^6 \) Obviously the “cash-on-hand” case is an extreme one, but it may be a reasonable approximation for some liquidity constrained individuals who face high implicit taxes on savings due to threat of theft of savings from household members or others or other behavioral patterns that prevent people from saving. We discuss some of those behavioral factors in the concluding section but do not attempt to introduce them into the model here.
framework and the consumption-utility framework by finding $X_{k,j}$ such that the individual would be indifferent between plans (P_k, D_k) and $(P_k - X_{k,j}, D_j)$.

2.4 Connection between EU(w) and Consumption-utility Frameworks

How are the expected-utility-of-wealth and consumption-utility frameworks related? An indirect utility function for wealth can arise from maximizing behavior in the consumption-utility framework. One might think of the risk aversion from the curvature of the utility of wealth in the classic framework as representing a “reduced form” version of the effective risk preferences that are generated from the consumption-maximization process.

However, the conditions for this to be the case are restrictive. Because the indirect utility function approach abstracts from the timing of payments and uncertainty within the year, it cannot easily capture crucial facts about the demand for insurance that arise within the consumption-utility framework. As such, Section 3 will show a series of predictions made from the consumption-utility framework than cannot be produced by the expected utility of wealth model.

We first establish conditions under which the consumption utility function u easily maps into the indirect utility of wealth function v. Assume perfect liquidity: no time discounting ($\delta = 1$), costless borrowing and savings ($R_b = R_s = 1$), and a debt limit in each period set at remaining lifetime earnings. In this case, if there were no possibility of a loss and no insurance contract needed, optimal consumption would simply be to consume y in each period. Denote initial wealth as the sum of lifetime earnings, $w_0 = \sum_{t=0}^{T} y = Ty$. Then, the indirect utility function over total wealth is simply $v(w_0) = Tu(y)$.

If the only possibility of loss occurred in the initial consumption period, total lifetime resources for an individual who purchased an insurance contract Z_j would simply be $w_0 - P_j$ in the case of no loss occurring and $w_0 - P_j - D_j$ in the case the loss occurs. Since the person could perfectly smooth consumption over these lifetime resources, we would have that:

$$v(w_0 - P_j) = Tu\left(y - \frac{P_j}{T}\right) \quad \text{and} \quad v(w_0 - P_j - D_j) = Tu\left(y - \frac{P_j}{T} - \frac{D_j}{T}\right)$$
Then, so long $u()$ was homothetic7, $v(w) = u(c)$. That is, if curvature over consumption utility were $u(c) = \ln(c)$, then the indirect utility function over wealth could be given by $v(w) = \ln(w)$. In this case, the expected-utility-of-wealth formulation is directly related to the consumption-utility formulation. It is worth noting here that the appropriate measure of initial wealth when considering the utility of wealth function v as the indirect utility function from consumption is lifetime earnings.

This equivalence clearly breaks down if the assumptions of “perfect liquidity” are not met. More subtly, however, even if we assume “perfect liquidity”, the mapping we lay out here only holds for the case where the possible loss and insurance arise solely in the first period and all uncertainty is resolved at the time that consumption is chosen. In a more realistic process, where the possibility of loss arises over multiple periods, there is an additional distortion in the consumption-utility process. The distortion arises due to the inability to perfectly forecast total lifetime resources because one does not know for sure if the loss will occur at all. Due to that uncertainty, it will not generally be possible to perfectly smooth consumption over all periods, even under “perfect liquidity”, unless one purchases a full-insurance contract.

Section 3. Results

The consumption-utility framework makes a number of predictions about the demand for insurance that distinguish it from the expected utility of wealth model. In this section, we present key results that emerge from the consumption-utility framework. Throughout, we illustrate and provide demonstrations of the results using calibrated examples building on the simple model in the prior section. We begin with two results in which the consumption-utility framework allows us to consider issues that are beyond the scope of the expected utility of wealth model.

\textit{Result 1: The value of insurance is affected by the interest rates and borrowing limits an individual faces.}

\textit{Result 2: The value of insurance is affected by the structure of how premiums are paid.}

Our first two results from the consumption-utility framework can be illustrated with a set of simple calibrated examples depicted in Figure 1. For this figure we solve for the marginal value

7 CRRA utility is homothetic, but CARA is not.
the individual has for a one-year insurance contract with a $500 deductible versus a $1,000 deductible when facing the possibility of a single larger loss (> $1,000) that occurs with 70% probability. We set the level of the premium for the higher-coverage option at $4,000 here, which is equivalent to fair insurance for an implied uninsured loss size of a bit over $6,000 and makes this example very roughly calibrated to the costs of employer-sponsored insurance in the U.S. We assume that the individual faces this insurance option in the current year and will then live for another 20 years with full insurance in those later years. For these examples, we assume the individual has no existing assets and earns annual post-tax income of $20,000 each year, which is around 170% of the individual federal poverty level for 2018. We shut down time preference: the individual is perfectly patient (δ = 1) and there is no return on savings (Rs = 1). The individual has log utility over monthly consumption (u(c) = ln(c)), implying a monthly coefficient of relative risk aversion of one.

Figure 1 will illustrate a series of our results. It shows the value for the $500 of additional insurance coverage at different levels of borrowing interest rate for two scenarios: a) premium payments are paid smoothly throughout the year in predictable equal installments and b) premium payments are due up-front in the first month in a lumpy fashion.

We see that the value of additional insurance is very close to the expected value ($350) when the person can borrow at zero cost and hence has perfect liquidity from lifetime wealth. However, for higher interest rates, the value of additional insurance diverges from the expected value. Liquidity constrained individuals will typically prefer smooth premium payments to all-at-once premium payments. The solid line shows that when the premiums are paid in a smooth fashion, an individual facing higher borrowing costs will value the insurance more highly. The intuition for this result is that the smooth premiums facilitate consumption smoothing in the face of unpredictable uninsured losses (i.e., deductible payments). Smoothing consumption through premiums becomes more attractive as borrowing costs rise, since smooth premium payments allow the person to avoid high borrowing costs. In contrast, if the premiums for insurance are required all at once (up-front in the first month), those large premium payments must be financed similarly.

8 The assumption of full insurance in later years simplifies the analysis. The value of assets in the current year is naturally affected by assumptions about the nature of risk and insurance exposure in future years.

9 Note that it is not merely the premiums being required up-front that can create source of the divergence. The lumpiness itself can be a problem. For a cash-on-hand consumer, who could not save for the premium, a premium due all at once at the end of the year is just as problematic as a premium due all at once at the beginning of the year.
to uninsured costs. In that case, for this example the value of additional insurance actually falls as borrowing costs rise, since it becomes more costly to smooth in response to the premium payments.

Figure 1. Value of Insurance by Borrowing Interest Rate and Timing of Premium Payment

![Graph showing the value of insurance by borrowing interest rate and timing of premium payment.](image)

Note: Presents the value of $500 additional insurance in the consumption-utility model ($500 v. $1,000 deductible). Assumes a 70% chance of loss. Expected value = $350. Assumes annual income=$20,000, $\delta = 1$, $R_s = 1$, and $u(c) = \ln(c)$.

The consumption-utility framework can produce values of willingness-to-pay for insurance that cannot be explained in the simple expected utility of wealth model. For instance, seemingly risk-seeking behavior can result from risk averse preferences.

Result 3: For an individual with risk averse consumption utility, willingness to pay for insurance can be below its expected value.

Again, see that in Figure 1, the line for the value of insurance with an up-front premium lies below the expected value of that insurance. This result may be especially important to consider when
economists try to estimate the welfare value of insurance programs. The observed willingness to pay for insurance may be low for liquidity constrained individuals if premium payments are lumpy and have to be financed with costly borrowing, but those same individuals may nonetheless receive large welfare benefits from *having* insurance if it is either provided to them or can be financed more efficiently.

Result 3 showed how the consumption-utility framework can produce puzzlingly low willingness-to-pay for insurance. Result 4 shows that it can also produce puzzlingly high willingness-to-pay for insurance when premiums are paid smoothly, where willingness-to-pay actually exceeds the amount of the additional insurance coverage. Such a willingness to pay would violate dominance from the expected utility of wealth model. However, it can make sense for a liquidity constrained individual because insurance with smooth premiums facilitates lower-cost consumption smoothing.

Result 4: Liquidity-constrained individuals can have willingness to pay for insurance that leads to choices that appear dominated from an expected-utility-of-wealth perspective.

Result 4 can be seen in Figure 2, which replicates the exercise from Figure 1 under the smooth-premium case but for different probabilities of loss for a few different levels of liquidity constraints. The horizontal dashed line highlights the dominance-violations where values exceed $500 (the difference in deductibles for this example). The gap between the individual’s value for additional insurance and its expected value rises for higher levels of probability, with an especially strong effect for extreme liquidity constraints. For example, an individual who had “cash-on-hand” liquidity constraints, such that they could neither borrow nor save, would value lowering the deductible by $500 at more than $500 if the probability of loss is above 45%. The graph also shows the “no borrowing” case, where the person cannot borrow but can save, and high borrowing costs of 400% APR. Both of these cases show similar patterns of generally strong valuation for additional insurance and violations of dominance for higher levels of probability.

A related additional result can also be seen in Figure 2.

Result 5: Liquidity-constrained individuals can have willingness-to-pay exceeding expected value for insurance against events that are certain to occur.
While the expected-utility-of-wealth model and the consumption-utility framework with perfect liquidity never predict that people will pay a risk premium for insurance against certain losses, a liquidity constrained individual can pay more for “insurance” against a certain event than the magnitude of that event. The reason again is that insurance with smooth premiums is can be a more cost-effective way of financing a sure loss for someone with high borrowing costs. Examining the value of insurance for probability =1 events in Figure 2, we find that the liquidity constrained individual will pay more than $500 to cover a $500 certain loss.

Figure 2. Value of Insurance by Probability of Loss and Liquidity Constraints

Note: Presents the value of $500 additional insurance paid for by smooth premiums in the consumption-utility model ($500 v. $1,000 deductible). Assumes annual income is $20,000, $ = 1, $s = 1 except in Cash On Hand model, and $u(c) = \ln(c)$.

In the consumption-utility model, liquidity constraints interact with other factors that affect the value of consumption smoothing, including the level and nature of risk aversion and the level of income. Figure 3 shows how the value for insurance with smooth premium payments is affected
by the borrowing interest rate for different combinations of consumption-utility risk attitudes and income. The solid black line shows the results for our baseline example where the probability of loss is 70% and the individual has $20,000 in post-tax yearly income and log monthly consumption utility (CRRA = 1). The thin line just below that shows how the relationship changes if we hold fixed the curvature of consumption utility but increase yearly post-tax income to $40,000. Higher levels of income substantially mute, but do not eliminate, the effects of liquidity constraints on the value of additional insurance. The thin line above our baseline result shows the effect if we keep the post-tax yearly income at $20,000 but increase the coefficient of relative risk aversion on consumption utility from 1 to 2. We see for these cases that increasing the level of risk aversion makes the value of insurance significantly more sensitive to borrowing costs. Finally, we have also done this same exercise using constant absolute risk aversion (CARA) utility with the absolute risk aversion parameter set to match the level of absolute risk aversion for our benchmark case of CRRA = 1 and income at $20,000. We find that the curve for CARA (not shown) is very similar to the one for CRRA. As such, CRRA preferences are not driving our results: even though CARA preferences often avoid the issue of determining the relevant levels of wealth in the standard model of insurance demand, the value of insurance with CARA preferences are still sensitive to the interest rate in the consumption-utility framework.

All of these results are consistent with the basic point that the extra value liquidity constrained people put on additional insurance with smooth premiums is driven by the benefit of avoiding costly borrowing to engage in consumption smoothing. That force is stronger in situations where the person would be willing to borrow more despite high borrowing costs (e.g., when income is low or risk aversion is high).

Result 6: The quantitative effect of liquidity constraints on the value of additional insurance can be large relative to the effects of income and risk aversion.

Figure 3 also reveals that the quantitative effect of liquidity constraints on the value of insurance can be quite sizeable when compared with the effects of income and risk aversion. In particular, we see that for the CRRA utility cases, going from fully liquidity to borrowing costs

10 The available monthly consumption in this case is $1,333.33, which is simply one twelfth of the yearly income after paying the $4,000 baseline premiums. As such, the coefficient of absolute risk aversion for monthly consumption when the coefficient of relative risk aversion is 1 would be $a = 1/(1,333.33) = 0.00075$.

around payday-loan level (e.g., 400% APR) increases the value for additional insurance by $50 to $100 in these examples. In contrast, if borrowing costs are low (e.g., under 10% APR), the income and risk-aversion variation in these examples affects insurance value by less than $20. This result relates back to Rabin’s (2000) calibration theorem and the now well-known result that an expected-utility-of-wealth maximizer should be close to risk neutral over modest stakes, such as additional insurance on the order of $500. Liquidity constraints, however, can help rationalize strong demand for insurance over modest stakes.

Figure 3. Effect of Borrowing Costs on Insurance Value by Risk Aversion and Income

Note: Presents the value of $500 additional insurance in the consumption-utility model ($500 v. $1,000 deductible). Assumes a 70% chance of loss, $\delta = 1$, and $R_s = 1$.

Result 7: Inferences about risk aversion using the expected-utility-of-wealth framework will be strongly affected by variation in liquidity constraints.
A related point is that if observed demand for insurance is driven by variation in liquidity constraints by consumption-utility maximizers, it will strongly affect the inferences an economist using the traditional expected-utility-of-wealth framework would make about risk aversion. We show an example of this in Table 1, which shows the willingness to pay for the additional $500 of coverage in our baseline example with a 70% chance of loss for different levels of liquidity constraints. We then show the risk aversion parameter that would rationalize that willingness to pay in an expected-utility-of-wealth framework both for the case of CRRA utility with wealth set at lifetime income. The implied risk aversion levels are very sensitive to the level of liquidity constraints.

Table 1. Implied Risk Aversion in the Expected Utility of Wealth Model

<table>
<thead>
<tr>
<th>Liquidity</th>
<th>Value of additional $500 insurance</th>
<th>CRRA $\rho_{w} = $420k (lifetime wealth)</th>
<th>CRRA $\rho_{w} = $20k (annual income)</th>
<th>CARA r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% APR borrowing (fully liquid)</td>
<td>$350.2</td>
<td>1.06</td>
<td>0.04</td>
<td>2x10^-6</td>
</tr>
<tr>
<td>20% APR (credit cards)</td>
<td>$367</td>
<td>93</td>
<td>3.5</td>
<td>0.0002</td>
</tr>
<tr>
<td>400% APR (pay-day loans)</td>
<td>$427</td>
<td>516</td>
<td>20</td>
<td>0.001</td>
</tr>
<tr>
<td>Saving but no borrowing</td>
<td>$493</td>
<td>2,015</td>
<td>77</td>
<td>0.005</td>
</tr>
<tr>
<td>Cash on hand</td>
<td>$754</td>
<td>-----NA (violates dominance)-----</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Column 1 presents the value of $500 additional insurance in the consumption-utility model ($500 v. $1,000 deductible), assuming a 70% chance of loss, annual income is $20,000, $\delta = 1$, and $R_s = 1$, and $u(c) = \ln(c)$. The implied risk aversion columns find the CRRA or CARA risk-aversion parameter that makes the individual indifferent between the lower and higher deductible at premium differences equal to the value in Column 1.

For example, the implied CRRA(lifetime wealth) for a perfectly liquid person is 1.05, close to the log utility of the underlying monthly consumption utility function.\(^{11}\) However, at borrowing costs of 20% APR (e.g., credit cards) the implied relative risk aversion coefficient would be 93 and at payday-loan level 400% APR it would be 702. Researchers using CRRA utility in the expected utility of wealth framework typically use other measures for wealth other than measures of lifetime...

\(^{11}\) Note that the slight deviation from the underlying consumption utility is consistent with our discussion in Section 2.4, since although the person is fully liquid there is still some inefficiency generated by the inability to perfectly forecast whether and when a loss will occur.
wealth, such as annual income or liquid financial wealth. Table 1 shows the results if we instead use annual income as the wealth measure. The level of risk aversion is naturally substantially lower if one assumes annual wealth, but again the risk aversion estimate is strongly affected by liquidity constraints. This result also highlights that in the full-liquidity case, matching the assumption on background wealth to lifetime wealth is important for accurately recovering the CRRA risk attitudes (i.e., log utility) of the consumption utility in the utility-of-wealth function. Finally, the table also shows the implied estimates of absolute risk aversion if one uses an expected utility of wealth approach with constant absolute risk aversion (CARA) utility, which is sometimes attractive because it allows researchers to abstract from issues of wealth effects. Again, however, the estimates are highly sensitive to underlying liquidity, highlighting that these results are not unique to CRRA utility and CARA utility does not avoid issues of liquidity constraints affecting implied risk attitudes.

Result 8: Approximating risk attitudes using the expected utility of wealth framework for an individual with liquidity constraints can lead to poor out-of-sample predictions.

An important question, however, is whether the expected utility of wealth model can serve as a reasonable proxy for the risk attitudes generated from the consumption-utility framework for a person at a given level of liquidity constraints. The expected utility of wealth model will clearly not be able to capture variation in risk attitudes related to changes in liquidity constraints or the timing of insurance payments versus uninsured losses that require the consumption-utility framework. However, can it approximate risk attitudes for a person with fixed liquidity constraints in similar insurance environments? The expected utility of wealth approximation may be effective in some cases, but Figure 4 demonstrates that it can lead to poor out-of-sample predictions.
Figure 4. Out of Sample Predictions from Expected Utility of Wealth for Different Probabilities of Loss

Note: Solid line presents the value of $500 additional insurance in the consumption-utility model ($500 v. $1,000 deductible) for different probabilities of loss (all losses exceed $1,000). Assumes annual income is $20,000, $\delta = 1$, $R_s = 1$, borrowing interest rate at 400% APR, and 20-year life with full insurance after current insurance year. The dashed line presents the implied value for insurance from an expected utility of wealth model with lifetime wealth set at 21*$20,000 = $420,000 and CRRA $\rho = 516$, which is the risk aversion such that the two models predict the same value for 70% chance of loss.

For this example, we use the baseline example of the value of $500 additional insurance against a 70% loss to pin down the level of risk aversion implied in the expected utility of wealth framework. From Table 1 we see that a person who could borrow at 400% APR would be willing to pay $427 for the lower deductible, which implies a coefficient of relative risk aversion of 516 for a utility of wealth function defined over lifetime wealth. We then plot the value for that same additional $500 of insurance coverage at different probabilities of loss using both the true consumption-utility model and the prediction using the implied expected utility of wealth model (i.e., CRRA for utility of wealth = 516). The expected utility of wealth approximation overstates
the value of insurance at lower probabilities relative to the true consumption-utility value and understates it for higher probabilities.\footnote{As an example where the expected utility of wealth approximation predicts well, we find that it predicts the value for insurance from the consumption-utility framework accurately if we instead hold fixed the probability of loss and just change the size of the additional insurance under consideration (e.g., $1,000 deductible difference). However, we suspect that in more rich examples there will also be effects on the probability of loss. The simple model examples here assume a single possible large loss so that different coverage choices on the margin do not affect the probability of a loss. However, that will not be true more generally.}

Section 4. Liquidity Constraints and Optimal Insurance-Contract Design

In this section, we demonstrate that liquidity constraints can change the nature of the optimal design for insurance contracts. Our goal is not to derive general results on the optimal contract under liquidity constraints, but rather to highlight that the logic for the optimal contract design in standard insurance models does not hold under liquidity constraints in some important situations.

Arrow (1963) derived a classic result for insurance economics that, in the absence of moral-hazard concerns, the optimal insurance contract for a risk-averse individual will take the form of a “straight deductible” with full coverage above the deductible.\footnote{Arrow (1963) writes, “Proposition 1. If an insurance company is willing to offer any insurance policy against loss desired by the buyer at a premium which depends only on the policy's actuarial value, then the policy chosen by a risk-averse buyer will take the form of 100 per cent coverage above a deductible minimum.” Thus, Arrow is not solving the Pareto-optimal (insurer-insuree) contract in this case. Raviv (1979) more systematically identifies cases in which coinsurance would arise. In addition to moral hazard, Raviv (1979) shows that positive coinsurance above the deductible could arise if insurers are risk averse or if the cost of insurance is non-linear in the coverage provided (that is, a load that is not proportional, but convex in the coverage provided). Here, we are examining the optimal policy from the perspective of the consumer, so the issues Raviv raises are not relevant.} Gollier and Schlesigner (1996) demonstrate the strong intuition for the optimality of deductibles by establishing that for the same level of expected coverage any other contract design will create a mean-preserving spread of uninsured losses compared to the straight-deductible contract. In the standard model, a straight-deductible contract will be optimal because it provides the greatest level of risk protection. Crucially, though, this logic rests on the assumption that utility will be fully determined by the total amount of uninsured losses and premiums paid for insurance.

A person with liquidity constraints, however, will care not only about the distribution of total uninsured losses, but also about how those losses arrive. A large loss that arrives all at once can generate a larger consumption shock than a series of smaller losses that total to the same amount. As a result, in situations where multiple losses can accrue during the insurance policy...
period, such as in health insurance, a person with liquidity constraints might prefer contracts that reduce the size of most shocks even if they raise the maximum total uninsured loss amount. In particular, deductibles expose the person to the potential for a large spending shock, especially in the early parts of the policy period. An alternative with the same expected coverage that lowers the deductible level will require a higher maximum-out-of-pocket limit but may result in smaller separate consumption shocks.

We give a simple example to show how the consumption utility model, plus liquidity constraints, can change the optimal contract design. We consider a baseline straight-deductible contract, in which the individual is responsible for total losses up to the deductible and then is fully covered for losses in excess of the deductible. For this example, we set the straight-deductible at $2,000. We then consider a set of insurance contracts with a “three-arm design” with a deductible, a coinsurance rate of partial coverage after the deductible up to a maximum-out-of-pocket limit (d, c, maxOOP). This type of design is relatively common in health insurance, for example. For our example contracts we fix maxOOP = $2500 in each case, and then for each value of d < $2000, we solve for the coinsurance rate that delivers the same actuarial value as the straight-deductible contract (shown in Figure A1). As such, we consider a series of contracts with the same level of expected coverage and each contract other than the straight-deductible involves a modest increase in the maximum-out-of-pocket limit.

We examine how the optimal contract from this set of possible contracts depends on the lumpiness of the risk that the individual faces. We consider two different distributions with the same probability distribution of total annual claims, but different distributions across months. In each distribution, the individual faces a ¼ chance each of total annual claims of $30,000, $2000, $1500, or $0. In the “multiple claims” distribution, annual claims are spread equally out across months, so the individual will either have 12 months of $2500/month, $167.67/month, $125/month, or $0/month in claims. In the “single claim” distribution, annual claims are located entirely within a single month (and each of the 12 months is equally likely to incur the claim). Note that we choose a distribution with more than 2 outcomes so that coinsurance rates will be relevant and that the actuarial value will change smoothly with changes in contractual form.14

14 With this distribution the actuarial value for all contracts we consider is 83.6%
Figure 5. Welfare Effect of Lowering Deductible, Holding Constant Actuarial Value.

Note: Assumes high borrowing costs ($R_b = 10$), annual income is $20,000, \(\delta = 1 \), and \(R_s = 1 \), and \(u(c) = \ln(c) \). Welfare effect is measured as the amount of annual income (spread equally across months) the individual would need to be given if they had the $2000 deductible contract to make them indifferent between that contract and the lower deductible contract. In “lumpy claim” distribution, annual claims are located entirely within a single month. In “smooth claims” distribution, annual claims are spread evenly across months.

Figure 5 shows the value a liquidity constrained individual would have for contracts with different deductible levels under both the “single claim” and “multiple claims” scenarios.15 We continue with the parameters of our baseline consumption utility model log monthly consumption

15 To make the two cases more easily comparable we make an assumption of “perfect foresight” in the “single claim” scenario. That is, we assume that at the beginning of the policy year the individual learns what loss size he will experience, if any, and the month in which it will occur. With this perfect foresight, the individual can then optimize his consumption path during the year without solving a dynamic consumption problem over the course of the year. This simplifies the programming for our simulation, but also matches the environment in our “multiple claims” case. Our assumption for multiple claims that they arrive smoothly throughout the year implies that the individual learns the loss sequence at the start of the year. We discuss the “perfect foresight” simplification in the next section in more detail, as it has more substance in the context of our application in Section 5.
utility (i.e., CRRA = 1), and show results with extremely high borrowing costs (900% APR) but no borrowing limit. This comes close to modeling a cash-on-hand scenario but avoids technical issues that arise with strict borrowing limits. We see that in the “single claim” example, the classic Arrow (1963) result holds: the individual prefers the straight-deductible contract to any of the equivalent-actuarial-value options with lower deductibles. However, in the “multiple claims” case, the liquidity-constrained individual prefers a contract with a lower deductible but positive coinsurance coverage. Among these contracts with constant actuarial value, the individual prefers the contract with deductible just above $1,500 and coinsurance around 3%. Even though lowering the deductible to this level increases the loss in the worst-case scenario, it increases the expected welfare for the liquidity-constrained individual by around $100 relative to the Arrow straight-deductible contract. It is worth noting, however, that liquidity constrained individuals do not necessarily want the lowest possible deductible level. There remains a tradeoff with risk protection, and in this case with the individual would prefer the straight-deductible to plans with deductibles much below $1,500.

5. Application: Valuing Cost-Sharing Reductions

In this section, we apply our consumption-utility framework to a realistic policy case: valuing the cost-sharing reductions (CSRs) available to people who purchase health insurance on the health insurance exchanges established by the Affordable Care Act (ACA). This exercise demonstrates that considering the underlying liquidity constraints of the population affected by policies affecting insurance markets can have a large effect on estimates of program efficiency.

5.1 Background on CSRs

The ACA introduced CSRs as a way of addressing the affordability of health insurance for lower-income populations. Insurers who offer health plans on the private health exchanges are required to offer plan designs with reduced levels of cost sharing (i.e., higher coverage) to lower-income enrollees who sign up for plans in the ACA silver coverage tier (see DeLeire, Chappel, Finegold, and Gee 2017 for more on the CSRs). Silver plans must offer 70% actuarial value (AV), meaning that for a representative population, the insurer pays on average for 70% of the medical
costs. Individuals below 150% of the FPL receive cost-sharing reductions that raise their plan to an AV of 94%, between 150-200% of FPL have their AV raised to 87% and between 200 and 250% have their AV raised to 73%. Individuals who qualify for a CSR plan receive this higher level of coverage, but pay the premium level of the original 70% AV silver plan and these premiums are typically highly subsidized for these individuals.

Our interest in this section is to estimate within the consumption-utility model how the value of the additional insurance coverage for an individual receiving a CSR plans would be affected by that person’s liquidity constraints. For this exercise we compare the value an individual would have for a CSR plan to a standard 70% AV silver plan using the certainty equivalent approach outlined in Sections 2 and 3 above. That is, we estimate the reduction in premiums (if premiums were paid smoothly) the individual would need in the non-CSR plan to be indifferent between that and the receiving the additional coverage of the CSR plan.

There are many different possible combinations of cost-sharing features (i.e., deductibles, co-pays, coinsurance) that can be used to achieve the AV targets and ACA enrollees can typically choose from many different plan designs. For our exercise, we use a set of simple plan designs that achieve the appropriate AV targets with deductibles and maximum-out-of-pocket limits similar to those typically seen in the ACA marketplace. Appendix Table A1 gives the details of the specific plan designs we consider.

5.2 Data and Approach

In order to realistically value the insurance provided by the CSRs, we need data on the distribution of healthcare claims an individual could expect. Importantly, for the consumption-utility model we need to consider not just the annual level of medical spending for an individual, but also how those spending needs are distributed over time. We use claims data taken from the 2010 Truven Marketscan database, which provides health care claims for individuals typically insured by large employers in the U.S. We select individuals age 24-64 continuously enrolled for

16 This AV can be achieved through many different combinations of deductibles, copays, out-of-pocket maximums, etc.—it does not entail a 30% coinsurance rate.

17 The original design of the ACA called for the federal government to compensate insurers for the cost of providing these higher-coverage CSR plans at reduced premiums, though there has been substantial controversy and uncertainty surrounding these federal payments in the subsequent years.
12 months, and take a 1% sample of them, giving 217,080 enrollees. For each month, we sum the total inpatient and outpatient spending for that month (including spending originally covered by insurance and patient cost-sharing). Then, to limit the computational burdens of the exercise, we select 5,000 individuals at random and use those 5,000 observations as our empirical claims distribution. As such, our exercise allows for 5,000 distinct claims realizations over the course of a year from a randomly selected subset of the insured individuals in the Truven Marketscan database.

To implement the monthly consumption model with this realistic distribution of claims, we need to specify how individuals’ expectations over future expenses evolve during the year. For instance, when an individual realizes a certain amount of claims in January, that realization could change their expectation of claims in future months, which will change their optimal savings and consumption plans this period. Unfortunately, little is known about individual expectations about medical expenses (see Ericson, Kircher, Starc, and Spinnewijn 2015 for some results and a discussion), let alone how they evolve during the year.

As a tractable and conservative approach to this problem, we assume that after individuals choose their health insurance plan, they learn the complete path of medical expenses they will incur for the course of the year. That is, in January, the individual will know what their medical expenses will be in Feb, March,…, December and can plan and save accordingly. Clearly, this reduces the uncertainty within the year that the individual faces, and is a conservative assumption that understates the effect of liquidity constraints on the value of insurance. We call this the “perfect foresight” assumption. However, it is important to highlight that while we assume the individual has perfect foresight over the course of the year about the flow of her medical spending after selecting insurance, we establish the ex-ante value of insurance before this realization is known based on the distribution of possible medical-spending needs the individual might face.

18 This assumption also captures, in an ad-hoc way, the idea that individuals may have more time to plan for some bills that others. Here, the individual can begin planning to pay for December medical bills in January—essentially, a 12 month lead time. On the other hand, the individual doesn’t have time to respond to January bills in advance. In truth, bills for some types of services (prescription drugs, elective procedures) are likely due immediately, while others (emergency room visits) can be postponed at some cost.
Given our perfect foresight assumption, no information is revealed during the year, which simplifies the analysis since dynamic programming techniques are not necessary. In particular, in January, individuals can solve the following non-stochastic maximization problem:

$$\max_{c_1, \ldots, c_{12}} \sum_{t=1}^{12} \delta^t u(c_t) + V_{12}(a_{13})$$

subject to borrowing and budget constraints. The final term $V_{12}(a_{13})$ represents the forward value function at the end of the year given the (possibly negative) assets the individual carries into the future. For our example, we continue to simplify calculations by assuming that the individual is fully insured for the remaining lifetime of 20 years after the year under consideration.

5.3. Results

We consider how liquidity constraints affects the value of the CSR plans relative to the 70%-AV silver plan benchmark for an individual with the same income and life horizon as our examples in Section 3 (e.g., income ~ 125% of the federal poverty line). The true value of the CSR reductions in the population would naturally be affected by the distribution of assumed income, liquidity constraints, and assumptions about changing income profiles and lifecycle horizons. Nonetheless, we think this simple example helps to illustrate how much the welfare value of this type of public policy can be affected by accounting for liquidity constraints and provides quantitative estimates that are somewhat realistic.

Table 2 shows the results for an individual with log utility. An individual with perfect liquidity values additional coverage of the CSR plan at only very slightly more than the expected value of that coverage. This relates to Rabin’s (2000) point that even a risk averse person will appear approximately risk neutral over stakes that are modest relative to lifetime wealth, such as the difference in insurance deductible on the order of around $2,000. However, the value of the CSRs rises sharply with borrowing costs. For example, an individual who faced borrowing costs of 500% APR, similar to very costly payday-loan borrowing, values the additional coverage of going from the 70% AV silver plan to the 73% AV CSR plan at $177, which is 31% higher than the expected value of that additional coverage. For the 94% AV CSR plan, that same individual

19 We assume annual income = $20,000, annual premiums = $4000, $\delta = 1$, and $R_s = 1$, and $u(c) = \ln(c)$.

26
would receive a welfare value of $1,236, which is almost $200 more than the expected value for that additional coverage.

Table 2. Value of Cost-sharing Reductions for CRRA =1 under Liquidity Constraints

<table>
<thead>
<tr>
<th></th>
<th>CSR 73%</th>
<th>CSR 87%</th>
<th>CSR 94%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected value of additional coverage</td>
<td>$129</td>
<td>$760</td>
<td>$1,042</td>
</tr>
<tr>
<td>Value under liquidity constraints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borrow at 0% APR (fully liquid)</td>
<td>$129</td>
<td>$760</td>
<td>$1,042</td>
</tr>
<tr>
<td>Borrow at 20% APR</td>
<td>$137</td>
<td>$800</td>
<td>$1,094</td>
</tr>
<tr>
<td>Borrow at 150% APR</td>
<td>$171</td>
<td>$888</td>
<td>$1,188</td>
</tr>
<tr>
<td>Borrow at 500% APR</td>
<td>$177</td>
<td>$934</td>
<td>$1,236</td>
</tr>
</tbody>
</table>

Notes: Gives the certainty equivalents that equate the value of the CSR plan to the 70% AV silver plan. See Appendix Table A1 for plan design details. Data source: distributions of monthly health expenditures derived from the 2010 Truven Marketscan claims database. Assumes annual income is $20,000, annual premiums for CSR 70 are $4000, $\delta = 1$, and $R_s = 1$, and $u(c) = \ln(c)$.

The additional insurance value for the CSRs implied by the monthly consumption-utility model for a person with strong liquidity constraints can have important implications for whether this type of policy is socially beneficial. Providing this type of benefit to low-income people is often financed by tax revenues, as was the original intention in the ACA for funding the CSRs. There is, of course, a cost to raising tax revenue due to tax distortions, which affects the marginal cost of public funds (MCF). The size of the MCF is disputed (see Ballard and Fullerton 1992, Poterba 1996, and many others.). So for illustration, suppose the MCF were 1.25 (so that each additional dollar raised in taxes entailed waste of $0.25). Ignoring any gain from redistribution, we can compare the insurance benefit of the CSRs to the cost of funding them. The social costs of funding the CSR reductions in this case would be $174 (CSR 73%), $985 (CSR 87%), $1,390 (CSR 94%). The estimates from our model would imply then that the individual welfare value of the additional coverage is not worth its cost for those who can borrow at credit-card interest rates and less. However, modest CSRs, such as the 73% CSR could have positive social value for those whose liquidity situation involves payday borrowing. The 94% CSR reductions would according to these estimates have positive social value only for those with much stronger liquidity constraints.
Section 6: Survey Evidence on Insurance Value and Liquidity Constraints

We fielded a survey using a Qualtrics panel in November and December of 2015 in order to investigate the links between liquidity constraints and insurance demand. We recruited 206 adults between 18 and 65 years old and targeted specific enrollment percentages by gender, age, and household income in order to get a sample that was similar to the overall U.S. working-age population on those characteristics.20 Appendix Table A2 gives summary statistics for this sample, which while not a fully representative U.S. sample has substantial diversity in age, income and other characteristics.21

For this survey we designed a primary measure of liquidity constraints based on how an individual would finance an uninsured medical bill. We asked subjects the following question:

\begin{quote}
“Suppose you had to go to the emergency room because of an accident and just got a bill from the hospital for $1,000 that is not covered by insurance and is due within a month. What percent of the $1,000 hospital bill would you cover from each of these sources (total must add to 100 percent)?”
\end{quote}

We asked subjects to consider these sources of funds: “money you already have (e.g., savings/checking account); extra money you save by pulling back on spending; extra money you earn by working more; borrowing from friends/family; borrowing using credit cards or home equity lines; borrowing using payday or pawn-shop loans; selling things you own; and other sources.”

20 In order to ensure valid data, we also included two aggressive attention screeners in the survey and only those who passed both of those screeners and who took at least one third of the median time for the survey from a controlled pre-test (11 minutes) were included in the final sample. We contracted with Qualtrics for 200 participants satisfying these screens with balance on the targeted demographics and were delivered 206 respondents. These attention screeners are similar to ones used by Bhargava et al. (2017) in their online surveys about health insurance. They are designed to present a casual reader with a set of options that look like they are asking for an opinion (and hence easy to click without thinking) but the text of the question actually instructs the subject to select a specific option or skip the question completely. Only 32\% of Qualtrics panel participants who took the survey passed both of these aggressive attention screeners and are included in the sample.

21 Our sample is better educated than the overall population, with 55\% having an associate degree or higher, which is around 10\% higher than we would expect from 2015 Census reports.https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20-578.pdf On the other hand, we find that just under 70\% of our sample reports private health insurance coverage (employer sponsored and exchange markets) and 11\% are uninsured in 2015, which are both close to official statistics for the U.S. population in 2015. See for example: https://www.cdc.gov/nchs/data/nhis/earlyrelease/insur201609.pdf
We find that only 31% say they would pay the medical bill fully from money they already have, suggesting that the majority would have to engage in some sort of borrowing or consumption response to finance the bill. For our analysis in this section, we use the share of the bill the person says they would pay from existing funds as a simple indicator of liquidity constraints. Specifically, we find that a median split on this variable occurs at 50% funded from current money, with half the subjects stating that they would cover 50% or more of the bill from money they already have and the other half being able to cover less. We label the 50% of the subjects who can cover less than half of the bill from existing funds as “liquidity constrained”. This measure of liquidity constraints is, unsurprisingly, strongly but not perfectly correlated with household income. More than 80% of the respondents reporting household income below $15,000 are liquidity constrained by this definition. Among the top two income groups, that proportion is significantly lower yet still substantial at 40%. We also fielded a more traditional question from prior research (Lusardi, Schneider and Tufano, 2011) that asks people “How confident are you that you could come up with $2,000 if an unexpected need arose within the next month?” The answers to that question are highly correlated with our primary measure of liquidity constraints and also match the prior findings by Lusardi et al.

The survey then asked questions to assess the extent to which people placed value on lower deductibles and smooth premium payments in ways that would be difficult to reconcile with frictionless models of consumption smoothing. Two measures related to a willingness to pay for dominated lower-deductible health plans. We replicated a menu of four hypothetical plan options from Bhargava et al. (2017) in which three lower-deductible options are dominated by an option with a $1,000 deductible. The second measure asked subjects to rate which of two arguments they found more persuasive about the benefits of choosing either a $500 or $1,000 deductible in a situation where the $1,000 deductible cost $650 less in premium. One argument highlighted that the high deductible’s premium was so much lower it more than covered the deductible difference (i.e., dominance argument) and the other highlighted that it might be difficult to set aside money to pay for higher deductibles (i.e., budgeting argument favoring low deductibles). A final question asked subjects about their preference for a “rebate plan” motivated by previous work suggesting this idea in Johnson et al (1993). In this question we asked people to consider either a standard health insurance plan with a $1,500 annual deductible and an annual premium of $2,000 or an equivalent “prepay with rebate option”. The rebate plan had a premium that was $1,500 higher for
the year and no deductible. However, this plan would give a rebate at the end of the year equal to the difference between $1,500 and their medical spending if their spending came in under $1,500 for the year. See the Appendix for details on these survey questions.

Table 3. Survey Results on Liquidity Constraints and Demand for Insurance

<table>
<thead>
<tr>
<th>Measures of desire for insurance to smooth consumption</th>
<th>(1) Chose dominated health plan</th>
<th>(2) Find argument for dominated plan persuasive</th>
<th>(3) Chose and agree w/ dominated (Combo 1 + 2)</th>
<th>(4) Prefer rebate to deductible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall mean of dependent var:</td>
<td>0.54</td>
<td>0.33</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>Liquidity constrained</td>
<td>0.18**</td>
<td>0.17**</td>
<td>0.18***</td>
<td>0.13*</td>
</tr>
<tr>
<td>(0.08)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td></td>
</tr>
<tr>
<td>Control for household income</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Control for level of education</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of observations</td>
<td>206</td>
<td>206</td>
<td>206</td>
<td>206</td>
</tr>
</tbody>
</table>

Notes: Linear regression with heteroscedasticity-robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10. The independent variable measure for liquidity constraints is an indicator that takes the value of 1 if the subject reported below median fraction of a $1,000 medical bill that they would pay from existing liquid funds (median = 50% paid with liquid funds). The dependent variables are as follows: (1) indicator for selecting a deductible of less than $1,000 in a 4-option hypothetical menu of health plan options with monthly premiums. The 3 lower deductibles all have total premiums that exceed the premiums of the high-deductible option by more than the deductible difference (i.e., are dominated); (2) Indicator for stating that an argument in favor of choosing one of the lower deductibles from the hypothetical plan choices because of challenges of budgeting for out-of-pocket payments is more persuasive than an alternative argument for the high deductible that highlights dominance, (3) An indicator for both choosing the dominated one and finding the argument for it more persuasive, (4) An indicator for stating a preference for a hypothetical health insurance plan with higher premiums and a rebate at the end of the year over an equivalent plan with a deductible.

Table 3 presents regression results on the correlation between our indicator for liquidity constraints and subjects’ answers on these insurance-demand questions. We find a strong positive correlation between liquidity constraints and a preference for dominated lower deductibles and the rebate option. Those with liquidity constraints are about 18 percentage points more likely to select dominated options and to find arguments for doing so persuasive. They are 13 percentage points more likely to state a preference for a rebate option over a deductible option. We control for both household income and the respondents’ level of education in these regressions, which suggests that there may be an important link between liquidity constraints and insurance demand even beyond income and education effects.
Section 7: Discussion and Conclusion

This paper establishes the importance of accounting for liquidity constraints when assessing the value of standard insurance contracts. Important insights about insurance emerge from our consumption-utility model that are not easily captured in standard expected-utility-of-wealth models. Our survey evidence suggests that there may be value in future empirical work to collecting measures on individual liquidity constraints when assessing insurance-market dynamics. Our application to valuing cost-sharing reductions also highlights that normative evaluations of economic policy related to insurance markets can potentially incorporate assumptions about borrowing costs and liquidity constraints in a tractable way. Furthermore, our framework shows that evaluating the benefit of insurance to liquidity-constrained individuals requires considering how an alternative transfer would be delivered: a lump-sum transfer in lieu of insurance delivers different utility than a transfer delivered smoothly over time. There are, however, some limitations to our analysis and some important areas for future research to better understand the links between liquidity constraints and insurance.

One such issue is that in the consumption utility model it matters when bills become due within the year. A natural question in practical applications is, when are bills actually paid? We assume here that consumption reductions and borrowing coincide with when bills are generated. That assumption is likely reasonable for some types of insurance, where cost-sharing must be paid before the service is rendered. For instance, for both home and auto insurance, contractors and mechanics typically won’t make repairs without some payment upfront. Yet the timing of payments is more complicated for some other insurance markets, such as health insurance. Some medical services require cost-sharing payment in advance of receiving care and likely fit our model assumptions well. A classic example is prescription drugs, which are typically paid for at the time the individual acquires the drug. Many physicians’ offices require cost-sharing payment at the time services are delivered, and this may be more strictly enforced in areas where patients are more likely to be a payment risk—precisely the liquidity constrained population we are considering. For many other services, such as emergency room visits and hospitalizations, though, there may be more flexibility in how quickly bills must be paid. That flexibility creates an additional degree of freedom for a liquidity-constrained individual. Empirical applications of the consumption-utility
model for these situations would ideally be paired with more information about the realities of bill payments and the beliefs people have about their bill-payment options.

Another obvious and important direction for future research is to better understand the link between liquidity constraints and moral hazard. Our analysis has abstracted from moral hazard to allow us to isolate important insights about how liquidity constraints interact with the ex-ante value of risk protection. An analysis of moral hazard is beyond the scope of this paper, but we can highlight a few initial thoughts on how liquidity constraints may interact with moral hazard. Liquidity constraints partially explain why individuals respond to the “spot price” of medical care (the cost sharing they must pay today), not merely their effective end-of-year price (Aron-Dine, Einav, Finkelstein, and Cullen 2015). We also conjecture that, all else equal, a liquidity constrained person’s medical utilization will often be more responsive to cost-sharing than a fully liquid person’s. The reason is that for the same cost-sharing level, the liquidity-constrained person faces an additional financing or consumption-distortion cost for medical services than a person with perfect liquidity. As a result, liquidity constraints may provide an explanation for Einav et al.’s (2013) finding that those whose medical utilization would fall most with higher deductible plans are least likely to choose them when given an option. It may also be valuable to explore how liquidity constraints interact with other forms of moral hazard such as how people decide to time when they incur claims (Cabral, 2017; Diamond et al., 2018).

To the extent that liquidity constraints affect service utilization under insurance, they may change some of the welfare implications associated with those responses. It may be that increased utilization when insurance coverage is high represents increased social efficiency if it solves a liquidity-constraint problem rather than the usual assumption that it represents inefficient waste, which is similar to arguments in Nyman (1999) and Baicker et al. (2015).

Our consumption utility model highlights new insurance market interventions that may be useful directions for future research. For instance, part of the demand for insurance when premiums can be paid smoothly under liquidity constraints comes from the financing benefit of insurance. Providing improved access to credit may reduce insurance demand in some settings. As one example, improving access to and awareness of payment plans for medical bills may make people less averse to high-deductible health plans. There may then be important interactions between financing opportunities and the extent to which high-deductible plans can be used effectively to address overutilization of some medical services. As another example, our survey
provided some evidence that people with liquidity constraints might benefit from slightly altered insurance arrangements that, for example, substitute rebates for deductibles. More generally expanding the analysis in this paper to derive the optimal design of insurance contracts under liquidity constraints and moral hazard would be valuable.

Another important direction for future research in this area is to better understand the links between liquidity constraints and behavioral biases. In our model of liquidity constraints, individuals are fully optimizing and make no mistakes. However, a wealth of evidence indicates that individuals may have incorrect beliefs (e.g. overconfidence) and present-bias or self-control issues. These behavioral biases could perhaps explain why individuals are so liquidity constrained, when optimizing models suggest that individuals would strongly benefit from saving or reducing debt. Adding these biases to the consumption-utility model could further enrich the framework, though would bring additional complexity. It may also be important to better understand how liquidity constraints interact with confusion about insurance and risk-related biases and heuristics, such as loss aversion. Our modeling and simulation exercises provide some clear evidence about how the normative value of insurance should be affected by borrowing costs and debt limits. The extent to which the consumption-utility model proves useful for positive analysis of observed demand, however, will likely depend on how liquidity constraints interact with these other considerations for insurance demand.

Finally, we have limited our analysis to formal liquidity constraints. However, evidence suggests that people are prone to mental accounting (Thaler 2008), and treat assets as not fungible across accounts (e.g. Hastings and Shapiro 2013). That is, people may have access to a savings or retirement account but act as though it were not available to smooth unpredictable shocks, and thereby reduce consumption rather than assets in response to shocks. Thus, mental accounting and related heuristics may lead people to act as if they are liquidity constrained, even if they could smooth consumption (Olafsson and Pagel, forthcoming). A promising direction for future research is to examine the impact of mental accounting on consumption responses to insurance cost-sharing.

22 Our survey collected a rough measure of present bias based on willingness to delay payments. We find a significant correlation between our measure of liquidity constraints and present bias. However, we see a weaker correlation between the present bias measure and choice of the dominated lower-deductibles for health plans than between our liquidity-constraint measure and dominated choice.
References

Appendix

Figure A1. Coinsurance and Deductibles Pairs that Give a Constant Actuarial Value

![Graph showing the relationship between deductibles and coinsurance to achieve a constant actuarial value.](image)

Note: Figure relates to plan options discussed in Section 5. Assumes distribution with \(\frac{1}{4} \) chance each of total annual claims of $30,000, $2000, $1500, or $0. MaxOOP = $2500. Actuarial Value = 83.6%.

Table A1. Plan Designs for CSR Valuation Exercises

<table>
<thead>
<tr>
<th>Deductible</th>
<th>Coinsurance</th>
<th>MaxOOP</th>
<th>AV For This Claims Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR 70</td>
<td>3000</td>
<td>0</td>
<td>6350</td>
</tr>
<tr>
<td>CSR 73</td>
<td>2500</td>
<td>0</td>
<td>5200</td>
</tr>
<tr>
<td>CSR 87</td>
<td>750</td>
<td>0.01</td>
<td>2250</td>
</tr>
<tr>
<td>CSR 94</td>
<td>250</td>
<td>0.12</td>
<td>2250</td>
</tr>
</tbody>
</table>

Note: Deductible and MaxOOP are chosen from common CSR plan designs. Coinsurance was then solved to match target actuarial value as closely as possible.
Appendix A1: Survey details

We fielded a survey using a Qualtrics panel in November and December of 2015 in order to investigate the links between liquidity constraints, insurance demand and more generally preferences for smoothing spending shocks through paycheck withdrawals. We contracted with Qualtrics to provide a 200-person sample and ended up with a final sample of 206 respondents. We limited the sample to those between 18 and 65 years old. We also targeted specific enrollment percentages by gender, age, and household income in order to get a sample that was similar to the overall U.S. working-age population on those characteristics. In order to ensure valid data, we also included two aggressive attention screeners in the survey and only those who passed both of those screeners and who took at least one third of the median time for the survey from a controlled pre-test (11 minutes) were included in the final sample.

Appendix Table A2 gives summary statistics on the self-reported demographic characteristics of the survey respondents. The balance targeting was successful, as age and household income breakdowns are close to those reported in the 2013 American Community Survey. Most importantly, the survey provides a sample with substantial diversity in age, income and other characteristics. While not a fully representative sample, this gives us increased confidence that the results from this survey are likely to be more broadly applicable to the U.S. population. Of course, it is important to remember that the Qualtrics Panels are volunteer panels and as such the participants are a somewhat selected group even after attempts to obtain balance on a few target variables. For example, we find that 55% of our sample has an associate degree or higher, which is around 10% higher than we would expect from 2015 Census reports. On the other hand, we find that just under 70% of our sample reports private health insurance coverage (employer sponsored and exchange markets) and 11% are uninsured in 2015, which are both close to to official statistics for the U.S. population in 2015.

23 See for example: https://www.census.gov/content/dam/Census/library/publications/2016/demo/p20-578.pdf Table 1 reports that the proportion with an associate degree or higher in 2015 was 46.5% for 25 to 34 year olds, 46.7% for 35-44 year olds and 42.6% for 45-64 year olds.

24 See for example: https://www.cdc.gov/nchs/data/nhis/earlyrelease/insur201609.pdf
Table A2. Demographic Characteristics of Survey Respondents (N = 206)

<table>
<thead>
<tr>
<th>Balance-target variables</th>
<th>Percent</th>
<th>Non-targetted Variables</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>49%</td>
<td>Employment</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>Full time</td>
<td>53%</td>
</tr>
<tr>
<td>18-24</td>
<td>15%</td>
<td>Part time</td>
<td>17%</td>
</tr>
<tr>
<td>25-34</td>
<td>21%</td>
<td>Not employed</td>
<td>29%</td>
</tr>
<tr>
<td>35-44</td>
<td>21%</td>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>45-54</td>
<td>23%</td>
<td>HS or less</td>
<td>22%</td>
</tr>
<tr>
<td>55-64</td>
<td>19%</td>
<td>Some college</td>
<td>22%</td>
</tr>
<tr>
<td>Household Income</td>
<td></td>
<td>2 or 4-year degree</td>
<td>48%</td>
</tr>
<tr>
<td>< $15,000</td>
<td>13%</td>
<td>Advanced degree</td>
<td>7%</td>
</tr>
<tr>
<td>$15,000 - $24,999</td>
<td>11%</td>
<td>Married</td>
<td>52%</td>
</tr>
<tr>
<td>$25,000 - $49,999</td>
<td>24%</td>
<td>Has children under 24</td>
<td>53%</td>
</tr>
<tr>
<td>$50,000 - $99,999</td>
<td>31%</td>
<td>Health Insurance Coverage</td>
<td></td>
</tr>
<tr>
<td>$100,000 +</td>
<td>21%</td>
<td>Private coverage</td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public coverage</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other coverage</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uninsured</td>
<td>11%</td>
</tr>
</tbody>
</table>

Notes: Summary statistics for the Qualtrics Panel survey described in Section 6.

As discussed in Section 6, we asked respondents to select a health plan from a hypothetical menu with four options. Here was the plan-choice prompt subjects saw:

Suppose you had the choice of the following health insurance plans from your employer. All plans have the same access to doctors and hospitals and differ only on annual deductible and annual premium. Which plan would you choose?

- $350 annual deductible with a cost of $1,957 in annual premium ($163/month)
- $500 annual deductible with a cost of $1,419 in annual premium ($118/month)
- $750 annual deductible with a cost of $1,321 in annual premium ($110/month)
- $1,000 annual deductible with a cost of $817 in annual premium ($68/month)

Choice patterns from this menu were: 16% $350; 29% $500; 9% 750; 46% $1,000.

We also asked respondents to rate their agreement with arguments in favor of selecting a dominant health plan. We asked them to consider a hypothetical person named Sam who could
choose between Plan A with a $500 deductible and $1,500 annual premium and Plan B with a $1,000 deductible and $850 annual premium. We then presented them with the following two arguments:25

\textbf{Argument A}: Sam should choose Plan A because it is difficult to budget for out-of-pocket medical bills. It can be difficult to set aside money for unexpected bills. With Plan B, Sam might be hit with an extra $500 in medical bills he cannot pay ($1,000 instead of $500 deductible).

\textbf{Argument B}: Sam should choose Plan B because the premium is so much lower. With Plan B, he will pay $650 less in premium for the year ($850 instead of $1,500). That more than covers the extra $500 deductible if he had to pay it.

They were asked to choose from four options, Argument A is much more persuasive, Argument A is somewhat more persuasive, Argument B is somewhat more persuasive, Argument B is much more persuasive.

25 To avoid bias due to order effects, we randomized whether the first argument seen was in favor of the low deductible or high deductible option.